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I. Summary

A study of optimal aerodynamics and propulsive control at supercircular speeds has been

initiated. The objective of the research is to develop methods for determining optimal guidance anci

control of earth launch kinetic energy weapons designed to intercept intercontinental ballistic

missiles early in their ascent trajectory. Optimal control techniques are being used to obtain multi-

stage trajectories based on minimizing the mass ratio. Study parameters include time of flight,

down range intercept distance and intercept altitude. Re-entry/skip trajectories are considered.

Innovative means of attitude control of the final stage which intercepts the target are being studied.

In addition an investigation of the control of aerodynamic forces on hypersonic vehicles by

boundary layer injection has been started. The goal of this work is to determine optimal patterns of

injection of a gas into a boundary layer on a hypersonic vehicle, to generate desired aerodynamic

forces. Two directions of approach are being studied. In the first, analytical means are being used

to study the effects of blowing on simple flow problems in the various flow regimes; a

combination of asymptotic and numerical methods are in use. In the second, numerical methods

are being used, with particular emphasis on obtaining efficient codes which result in the

computation of crisp shock waves and which can handle blowing in the boundary layer. Both

distributed and strip blowing are under consideration.

Preliminary results are presented.

II. Research Objectives

The contract for this research work has two phases, one dealing with optimal trajectories at

superorbital velocities and the other with aerodynamic force calculations. Hence the work

statement for the year's work has two separate parts as follows, where paragraph numbering from

the contract is repeated here.

O0OIAA

t. Formulate the automatic control problem description of the dynamics of

transatmospheric vehicles for ballistic missile defense. Appropriate control laws shall be Li

determined and techniques for vehicle optimization shall be developed. -. -

j ) I I7 , t. . .
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2. Examine schemes for the generation of aerodynamic control forces on hypervelocity

vehicles by the injection of gas into the boundary layer. Plan analytical and numerical

investigation of both slot and surface injection from hypersonic slender bodies and select

techniques for distinguishing among dominant fluid mechanical phenomena. Minimize the

effects of numerical difference schemes upon shock wave thickness and location.

III. Status of the Research Effort

This work began on August 15, 1986. The contract was to be for 37 months, divided into

three periods, the first being 13 months and the last two being 12 months each. At the end of the

first period, pending demonstration of satisfactory work, the first option was to be exercised in

order that work during the second period could proceed. A technical briefing was given to Col. D.

Finkleman (Air Force), Col. W. Merritt (Army) and Major S. Rezwick (Air Force) in early August

of 1986; it was indicated that they were well satisfied with the technical effort and results.

However, during the time that option one could have been exercised, the contract was being

transferred to Army superision and apparently the group transferring the contract to the Army was

not aware that further action was required. As a result this contract is terminated after 13 months

and a new contract for the remaining two options is being renegotiated with the Army Strategic

Defense Command. Thus, this final report covers one year of a proposed three year effort. The

following status report is in two parts, with the numbering corresponding to that of the phases in

the work statement.

1. Optimal Aerodynamic and Propulsive Control of Intercept Trajectories at Supercircular

Speeds.

Robert M. Howe, Principal Investigator

Nguyen X. Vinh Co-Investigator

Elmer G. Gilbert Co-Investigator

Ping Lu, Graduate Student

Aharon Karou, Visiting Scholar

Gi! Shorr, Visiting Scholar

I Introduction

The utilization of satellite-based kinetic-energy weapons for inttrcepting intercontinental

ballistic missiles during their ascent trajectory constitutes one of the major efforts in the current
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U.S. Strategic Defense Initiative program. In this research we have considered an alternative to
space-based weapons, namely, the use of land or sea-based kinetic energy interceptors. When

such interceptors are based on the U.S. continent, ranges of up to 5000 miles are needed. If the

interceptors are sea launched, for example from submarines, the required interceptor range can be

reduced to as little as 2000 miles or less. In either case the interceptor must accelerate to very high

speeds, typically twice circular orbit velocity, in order to reach a target at these distances within
several minutes.

In order to achieve these velocities, a rocket powered interceptor requires an overall mass
ratio of several thousand zo one. Even so, the interceptor takeoff weight can be held within

reasonable bounds by the use of miniature guided warheads. It is clear that such large mass ratios

can only be achieved by using between 4 and 7 rocket boost stages. In this research we have

considered the problem of optimizing a number of stage parameters and the angle of attack control
in order to minimize the overall required mass ratio. The time history of angle of attack was

paramneterized by letting the angle of attack for each thrusting stage vary linearly with time.
Additional parameters to be optimized included the thrust burn times for each stage and the coast

times between stage burns. Although rockets of this type would normally be launched straight up,
we have also included the initial launch flight-path angle as a parameter. This was based on the

assumption that a fairly rapid pitchover maneuver can be performed immediately after launch to

achieve the desired initial flight path angle.

Once the trajectory optimization problem has been converted to a parameter optimization
problem, a quasi-Newton minimization algorithm is utilized with penalty functions to implement

the terminal constraints required for intercept, as well as any additional constraints. The neces ;,'ry

gradients of the cost function with respect to the parameters are computed numerically using tfw i,

differences. A complete multi-stage trajectory must be run using numerical integration for ev.. v
evaluation of the cost function. For each set of N parameters this means that N+I cotlri' -

trajectories must be computed, one to evaluate the cost function for the given parameter set,,rP,',

and N to evaluate the gradient of the cost function with respect to each of the N parar

the trajectory optimization problems we have considered. between 10 and 20 paramett -

used. Thus between 11 and 21 complete multi-stage trajectories must be computed nir~ti,,,L.y

a single iteration of the optimization procedure. Also, each iteration utilizes a line search whici

requires several additional trajectory computations. It has been found that between 200 and 400

iterations are needed until satisfactory convergence to an optimal solution is achieved. It follows

that several thousand trajectories must be computed for each optimization case considered. In

order to reduce the overall computational time, the multiple-stage trajectories were calculated using
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an AD 100 multiprocessor computer. A VAX host computer was used to implement the

optimization algorithm and input new parameters to the AD 100 for each successive trajectory run.

In this way the total time required for an overall trajectory optimization was reduced from several

hours to several minutes.

In the next section scalar equations of motion for the interceptor trajectory are presented.

Subsequent sections discuss the optimization problem, its numerical solution, and results for a

typical 4-stage trajectory optimization.

1.2 Equations ofLMQtion

In order to reduce the trajectory computation times, only the two dimensional equations of

motion of the interceptor were considered. As a further simplification, the effect of earth's rotation

was neglected. It was felt that neither of these simplifications altered the overall nature of the

optimization problem. More comprehensive equations of motion can always be incorporated into

the optimization problem at a later time to improve the accuracy for those cases which may turn out

to be of practical interest. Thus the interceptor rocket was considered to be a point mass m moving

in a plane which contains the center of a spherical, non-rotating earth with inverse square

gravitational field. A convenient and efficient method for representing the velocity state of the

interceptor is in terms of the total velocity and the flight path angle with repect to the local

horizontal [1]. This leads to the following two-dimensional equations of motion:

r = Vsiny (1.1)

* Vo= - cos y (1.2)
r

2
T D go r0

V= - cos a -... sin y (1.3)
m m 2

r

22
1 T L go ro c

y= V. [ sin a + -. cosy + cos y (1.4)
r

TM (1.5)
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where

r = radial distance from center of earth 0 = polar angle

V = total velocity y = flight path angle

mr = interceptor mass T = rocket thrust

(x = angle of attack D = aerodynamic drag

L = aerodynamic lift r0 = reference radius

go = gravity acceleration at r = r0  Isp = specific impulse of rocket niotor

The aerodynamic lift, L, and drag, D, are given by the following formulas:

L 1.pV2AC,, D = I.pV2ACD (1.6)

CL= CNcos - CA sina, CD = CNsina + CA cosa (1.7)

where

p = atmospheric density A = interceptor cross-sectional area

CL = lift coefficient CD = drag coefficient

CN = normal force coefficient CA = axial force coefficient

CN and CA, which repnasent aerodynamic normal and axial force coefficients in body axes, can be

approximated for slender bodies by the following formulas [21:

CN = sin 2a cosA + .11 sina Isinz, CI = 0.15 (1.8)
2 it d CA

where

X = rocket length d = rocket diameter

The atmospheric density, p, in Eq. (1.6) is a function of the rocket altitude h, which is

given by the equation



h = (R - 1) r0 (1.9)

Three different methods fur approximating the variation of p with h were considered. The first

utilizes table lookup with linear interpolation based on a tabulated standard atmosphere. This

method introduces into the simulation a function with discontinuous slopes, which has the potential

of causing numerical difficulties in the descent algorithm (see Section 1.4). The second method

uses the following exponential approximation:

p = p 0 e'-Ph (1.10)

where 1/3 = 23,500 ft. and p0 is the atmospheric density at sealevel. The third method uses the

following analytic approximation [3]:

p/po = [Ao+ Alh+ A2h 2 + .. + Allhll]' 4  (1.11

with

A0 = 1.0000000000 Al = 0.3393495800 x 10-1 A2 = -0.3433553057 x 10-2

A3 = 0.5497466428 x 10-3 A4 = -0.3228358326 x 10-4 A5 = O.110 6 617734 x 10-5

A6 = -0.2291755793 x 10-7 A7 = 0.2902146443 x 10-9 A8 = -0.2230070938 x 10- 11

Ag=0.1010575266x 10-13 A10 =-0.2482089627 x 10- 16  AII =0.2548769715 x 10-19

Eq. (1.11) is valid from 0 to 200 km. altitude and is accurate to better than 5 percent for altitudes

up to 70 kin. It is a considerably better approximation than the exponential model in Eq. (1.10)

and takes no longer for computer execution than the table lookup scheme. Thus it represented our

preferred approach.
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Dimensionless versions of Eqs. (1.1) through (1.9) and Eq. (1.11) were used for the

trajectory simulation of each inteceptor stage while thrusting or coasting (T = 0). The state

variables r, 0, V and y are continuous from one stage to the next. On the other hand, the state

variable m, which represents the mass of each stage, undergoes a discontinuous decrease each time

a stage burns out and is dropped. The mass state m can be made continuous by defining it as the

rnmss of rocket fuel divided by the initial takeoff mass. The total instantaneous mass for each stage

is then the sum of the fuel mass and the inert mass. The burn time for each stage, as well as the

coast time per stage, constitute parameters to be optimized. For a given stage mass ratio, the stage

burn time determines the thrust level for the stage. Thus the parameters representing stage burn

times are equivalent to paramcters representing stage thrust levels. As noted previously, the time

history of angle of attack was parameterized by letting it vary linearly for each stage. Thus an

additional parameter per stage is the time-rate-of-change of angle of attack.

12. Constraints and Optimization Problem Formulation

To complete the statement ,f the optimization problem it was necessary to introduce

certain constraints on thi; trajectory and its defining parameters. The most obvious of these

were the ones required for target interception. After final stage cutoff, the payload must

coast in such a manner that at the specified intercept time, tf, the position variables, r(tf) arnd

0(tf), match those of the target.

There are several ways to implement the intercept conditions. One way is to impose them

at the time of final-stage cutoff, tc. If r(tc), 0(to), r(tf), and 0(tf) are known and the coast is an out-

of-the-atmosphere conic transfer, the values )ktc) and V(tc) required for intercept are determined by

solving an appropriate Lambert problem. This can be done numerically by the methods given in

141. The errors between the required and actual values of y(tc) and V(tk) must be zero for intercept

and these conditions givýe two equality constraints on the trajectory at t = tc.

It was found that unconstrained opturna,. conic coast trajecto, ies *e-enter the atmosphere or

even pass through the earth's surface. To assure that this doesn't hapien, the minimum altitude

during the coast was computed (as part of the solution of the L ambert problem) and specified to lie

outside the sensible atmosphere. The error between the computed minimum altitude and its

specified value constituted, when set to Tero, a third equality constraint.

Another way to implement the intercept condtion is to integrate numerically the equations

of motion of the final coast trajectory, just as the equations for the previous stages were integ-aed.

In this case the errors between the interceptor coordinates r(tf), 0(tf) and the target coordinates at the
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final time tf are set equal to zero to form two equality constraints. As before, a minimum allowable

altitude outside the sensible atmosphere can be chosen for the final coast trajectory. This minimum

altitude is then the third constraint. Alternatively, the effect of the atmosphere itself, which is

included in the trajectory equations, will ensure that a realistic altitude constraint is enforced when

the final coast trajectory equations are integrated. Indeed, this is the required approach in the aero-

assisted case, where the final coast trajectory actually utilizes aerodynamic down lift to hold the

trajectory at near constant altitude in the presence of supercircular velocity. In Section 1.5 an

example of this type is presented.

In addition to the equality constraints on the trajectory, inequality constraints may be

imposed on some of the problem parameters. For example, an initial stage acceleration, ACOT, may

have upper and lower limits, Amax and Amin. Direct treatment of these constraints in the

algorithmic process was avoided by imposing them implicitly through the introduction a nonlinear

transformation of a new parametric variable. In the case just mentioned a suitable transformation is

A +A A -A A.
A0T= max Mr + max min- sina (1.12)2 2 T

where aT is the new unconstrained parameter.

Putting all of the above details together in a compact notation yields a problem of the form

minimize f(z) subject to gi(z) = 0, i -- 1,2,3. (1.13)

Here: f(z) is the ratio of the launch mass to the payload mass, the gi(z) are the errors in meeting the

equality constraints, and z is a vector whose components are the "unconstrained" parameters

arising from models described in Section 1.2. Given z, it is clear that f(z) and gi(z) may be

L.valuated by integrating the equations of motion, computing m(tk), t V(tk), r(tc.), and O(tk), and

soiving the Lambert problem determined by the target specification. When the alternative method

involving numerical integration of the final coast trajectory Is used to implement the intercept

condition, f(z) was still evaluated from m(k:), but gi(i) is evaluated from r(tf) and 0(ti).

The algorithm for the numerical solution of (1. 13) requires the gradient (collection

of N first partial derivatives) ot functions such as f(z). While it is possible to derive formulas for

the partials (they may be written in terms of the differ-ntial equations adjoint to the linearized

equations of motion), they arc exceedingly complex because of the nonlinear functions appearing

in FAts. (1.1) - (1.9) and (0.1 1). T'his was the reason for using finite differences for the gradient

calculations.



1,4 Numerical Solution of the Qptimi71.hIrLErbJ1Cn.

A variety of numerical approaches have been used to solve trajectory optimization problems

with equality constraints. These include: (1) gradient projection methods, (2) Newton-Raphson

solution of the necessary conditions, (3) penalty function mchods. Approach (1) gives slow

convergence; approach (2) requires second derivatives of problem data and good initial estimates;

approach (3) leads to badly conditioned (though unconstrained) minimization problems. In the

research reported here approach (3) has been used, with its disadvantages attacked by using a

rapidly convergent quasi-Newton algorithm [5,61 and an augmented Lagrangian for the penalty

function.

In the usual penalty function method approximate solutions of (1. 13) are sought by

algorithmic minimization of

3

FP(z) = f(z) + itigi(z)]2 (1.14)

It can be shown [5,61 that the equality conditions can be accurately enforced by choosing the

penalty coefficients, ýii > 0, to be sufficiently large. In practice, numerical hazards, such as slow

convergence or convergence to false minima, are reduced by minimizing Fp(z) several times with

successively larger values for the penalty coefficients. At each successive stage the starting point

for the minimization algorithm is taken as the solution point from the previous stage. Even so, the

conditioning of Fi~z) worsens [5,61 as the p, increase and there is a practical limit to the accuracy

which can be achieved. Numerical errors in the minimization algorithm and the evaluation of Fpz)

and its ,gradient eventually become the limiting factors.

In the augmented Lagrangian approach Fp(z) is replaced by

FLZ) = f(z) + kgwz) + la[g(zfl (1.15)

where the ý. aie real numbers approximating the Ligrange multipliers for the minimization problem

1.13). When Fljz) is minimized, it is possible to satisfy the equality constraints accurately with

much smaller values for the penalty coefficients [5,61. The resulting improved conditioning of

F1 (z) reduces the bad effects of the numerical errors. Again, it is advantageous to solve a

sequence of minimization problems with successive initializations, where in this case both the X1



and the 4i are adjusted. The adjustment scheme proposed by Powell and described on page 134

of [5] was used with good results in the research reported here. It eliminated the need for human

intervention in selecting the parameters Xi and j.4i and improved by at least an order of magnitude

the accuracy of equality constraints over the simple penalty function approach.

Because of the highly nonlinear character of FL(z) and its poor conditioning, it was

necessary to pay careful attention to the procedure for its unconstrained minimization. Certainly,

the second order properties of FL(z) must be taken into account. The BFGS, quasi-Newton

program of Shanno and Phua [7] was found to be effective. Its line searci was modified to

compute derivatives along the st rch direction directly by forward differences. This eliminated the

need for gradient evaluations during the line search.

The performance of a quasi-Newton algorithm is predicated on the smoothness of the

function being minimized. The function should be at least twice continuously differentiable. Here,

the representation of empirical data appearing in the equations of motioa is irrportant. See, for

example, the comments in Section 1.2 on computing the atnospheric density bý table lookup with

linear interpolation.

Apother concern is the forward difference computation of the partial derivatives of FL(z).

If the step size is too small, the effects of round off errors are exacerbated; if the step size is too

large, truncation errors become appreciable. If the machine precision is e, it can be argued [61 that

the step size should be the order of e1/ 2 . In our case the machine precision e @ 10-12 was

determined by the AD 100, which has a 40 bit significand. It was found that the step size 10-6 was

reasonable, but that experimentation with the step size could improve the accuracy noticeably.

Even better accuracy was obtained by using central differences for the partial derivatives. It

reduced thI. effects of round-off errors, since in this case a larger step size could be used for the

same truncation error [6]. Of course, 2N + I evaluations of FL(z) are then needed to obtain FL(z)

and its gradient.

In general the trajectory state equations were solved numerically using fourth-order Runge-

Kutta integration with a fixed step size. A single-pass predictor method with a Gear RK-4 startup

algorithm was found to give better petformance in some cases [81 and represents an area for fuwther

research.

1.5 Example Optimal Trajectory Solutions

Two example optimal trajectory solutions are considered in this section. 0(tf) - 00, the total

change in polar angle of each trajectory, is set equal to 30 degrees. This corresponds to an

10



interceptor range of 2094 miles. The total time of interceptor flight was prescribed to be 300
seconds and the target was intercepted at an altitude of 200 km. Stage takecff weight was equal to
10,000 kg and physical parameters were assumed to be similar to those of a Minuteman 1II. The
specific impulse Isp of the rocket engines was equal to 300 seconds, and the ratio of initial fuel
weight to inert weight for the rocket motor of each 3tage was assumed to b'- 10. The intercept
condition was implemented by two equality constraints that required the interceptor coordinates at
the final time tf to match the target coordinates. Two cases were considered; aeroassisted and non-

aeroassisted. In the aeroassisted case the final coasting stage reenters the earth's atmosphere with a
controlled angle of attack which could generate downward lift. In the non-aeroassisted case the
angle of attack of the final coasting stage was maintained at zero, which meant that aerodynamic
forces could only cause drag. In each case there were 4 booster stages, with equal mass ratios
prescribed for each stage. The common mass ratio was therefo-e a parameter. As noted earlier,
the performance objective was to maximize the final payload weight. The results are summarized

in Table 1.1.

TABLE 1.1. Optimal Trajectory Data for 4-scage Interceptor

A.roassistcd Non-aeroa sisted
Final optimal payload weight 9.73 kg 5.63 kg
Mass ratio per stage 3.98 4.33
Minimum altitude in final coast to target 93.82 km 96.82 km
Burnout speed (Vc = circular orbit speed) 1.766 Vc 1.775 Vc
Burnout altitude 98.24 km 155.04 km

Launch flight path angle, y0  82.8 deg 60.6 deg

Initial thrust acceleration, stage 1 13.05 g 9.28 g
Burn time, stage 1 17.21 sec 24.86 sec
Coast time between stages 1 and 2 6.49 sec 1.84 sec
Initial thrust acceleration, stage 2 23.37 g 12.93 g
Burn time, stage 2 9.61 sec 17.84 sec
Coast time between stages 2 and 3 5.35 sec 2.41 sec
Initial thrust acceleration, stage 3 31.40 g 23.87 g
Burn time, stage 3 7.15 sec 9.67 sec
Coast time between stages 3 and 4 14.85 sec 56.74 sec
Initial thrust acceleration, stage 4 37.52 g 31.67 g
Burn time, stage 4 5.99 sec 7.29 sec
Final coast time to target 233.67 sec 179.36 sec
Total flight time 300 sec 300 sec
Total distance 2094 miles 2094 miles
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From the table it is clear that the optimal aeroassisted trajectory yields a significantly larger

payload, 9.73 kg versus 5.63 kg for the non-aeroassisted case. In Figure 1.1 are shown time

U ie 2*M ZfLx an WRO 249U 73.3
T (SEC.) T (SEC.

II

Uk Ua INA 24.. 2 .-
T (SECJ

Figure 1.1. Time history plots for the aeroassisted optimal trajectory.
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history plots of velocity, flight path angle, dynamic pressure and angle of attack for the

aeroassisted optimal trajectory. Figure 1.2 shows altitude versus polar ang1e plots for both the

aeroassisted and non-aeroassisted trajectories. Note how the aeroassisted trajectory is able to

maintain an approximately constant altitude of some 95 km over more than half of the final coast to

intercept. V1 possible despite the supercircular speed because of the aerodynamic down lift,

which reac riaximum of 1.87 g during this portion of the trajectory. The maximum total

downward , ti-n, including gravity, is therefore 2.87g. Since the centrifugal acceleration in

g units is V: is the circular-orbit velocity), it follows that constant altitude (i.e., a circular

orbit) will, n iý, presence of 1.87 g of down Lift, be maintained at a velocity of (2.87)1/2 or

1.69 4 Vc. R,-c'f: ce to the plot of V versus time in Figure 1.1 shows that this is indeed the case.

On the other h•', we see in Figure 1.2 that the non-aeroassisted trajectory must climb to over 150

km before the A I stage burn in order to avoid significant penetration of the atmosphere. This

results in a co Table more expensive trajectory in terms of required mass ratio.

U

NON.AEROASSUM1

THETA (DEG.)

Figure 1.2 Comparison of opdm- trwtories with and without acroassismce.
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The plot of angle of attack (x versus time in Figure 1.1 shows clearly the linear variation of

ca for each stage. Note that zero angle of attack was assumed during the coast between stage

bums. This was based on the assumption that the interceptor is aerodynamically stable during

these coasts with no active thurust vector control. Means of active attitude control would be

required to maintain the linear angle of attack variation shown for the final coast to intercept. One

option for achieving this would be to provide thrust vector control utilizing a low level of thrust

during this final portion of the trajectory. Such thrust will probably be required in any event to

provide course corrections to intercept the target. When this is included in the overall trajectory

optimization, it may very well produce a non-aer.)assisted optimal trajectory which is competitive
with the aeroassisted case, since now a downward component of thrust can be used to meplace the

aerodynamic down lift. It should be noted that boundary layer injection at hypersonic speeds,
which is the subject of Part 2 of the research reported here, is also a candidate for attitude control

while the interceptor is either coasting or thrusting in the atmosphere.

.6 Optima! Intercept from _a.S..e Base

The final stage of the computed trajectory is essentially a small rocket interceptor launched

from space, i.e., from the ascending (n-1)th stage. Therefore, an analytic study of the optimal

intercept trajectory has been made for the case of space launch from an orbiting platform. The

launch base is assumed to be on a Keplerian orbit. The trajectory of the target is arbitrary, but it is

assumed to be well determined after a time to called the acquisition time. Again, the intercept time

tf-t0 is restricted to several minutes.

For flight in a -vacuum and in a central Newtonian force field with impulsive thrust, a

complete analytical solution has been obtained. The study used the well established theory of the

primer vector in o.ptimal transfer. For a specified intercept time tf, the one-impulse solution

initiated at the time to is assumed. The associated Larmbert problem is solved and the magnitude of

the required impulse is computed. The resulting initial conditions and the transversality conditions

for optimality are sufficient to compute the primer vector which governs the optimal thrust control.

Then, based on the information provided by the primer vector, rules have been established to

search for the optimal solution if the assumed initial one-impulse trajectory is rot optimal. It has

been found that tihere are three possible optimal trajectories.

a. One impulse trajectory with the thrust applied immediately at the acquisition time to.

b. One-impulse with an initial coasting phase until the optimal time tl>to before the

application of the impulse.
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c. Two-impulse trajectory with the first inpulse at to and the second impulse at mid-course

for final interception.

The theory can be used to explain the necessary coast time between the nth stage of the

previously computed optimal trajectories for a multi-stage interceptor launched from the surface of

the earth.

A numerical example has been used to test the theory. The interceptor is launched from a
base in a circular orbit at 600 km altitude. The target is intercepted at an altitude of 250 km with a
down range longitude of 45 degrees and various latitudes ranging from 0 to 60 degrees. The
intercept times range from 2 minutes to 15 minutes. For each case the maximum characteristic
velocity for intercept is computed. Depending on the prescribed intercept time, the trajectory may

change from an elliptic trajectory to a clearly hyperbolic trajectory.

1.7 Guidance and Control to Intercept of the Final Stage

To provide terminal control out of the atmosphere so the final stage can home on the target
requires some type of guidance law and trajectory control. The trajectory can be changed by

providing acceleration at right angles to the interceptor flight path. For an interceptor which utilizes
a fixed rocket engine to provide acceleration along its longitudinal axis, a required lateral

acceleration component can be generated by the appropriate change in attitude angle.

To minimize weight and complexity, an attitude control method which uses only a single
small control jet has been studied. This single jet provides thrust at right angles to the longitudinal

axis of an axially-symmetric terminal stage. The stage is given a large roll rate about its longitudinal

axis, along which the main rocket engine provides continuous thrust. Attitude control is achieved
by turning on the small side jet for a fraction of each revolution and at the right time during the roll
cycle. A simple incremental change in attitude of the spinning stage can be viewed as a change in

direction of its angular momentum vector without a change in vector magnitude. Each discrete

change in attitude requires at least two impulses from the control jet. The first impulse produces an
increment in angular momentum at nght angles to the spin axis. The second control jet impulse is

applied half a roll period ',later to cancel the angular momentum increment at right angles to the spin
axis, which has now been changed in direction by the attitude angle increment. The size of the

incremental change in attitude angle can be varied by changing the thrust duration of the control jet.
If the available thrust is insufficient to change the attitude by the desired amount, then a number of

cyclic impulses followed by the same number of cyclic impulses initiated half a period later can be

utilized.
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The dynamics of the above control scheme has been studied using both analytic methods

and computer simulation. Minimum resolution in attitude angle has been established as a function

of system parameters, including minimum control-jet thrusting time. Multiple thrust maneuvers for

large attitude changes have also been studied in the same manner. Required control laws for

achieving desired attitude angle changes have been developed.

Once a means of attitude control is available, a guidance law is needed to specify the

required trajectory changes. The most commonly used guidance law for homing missiles is

proportional navigation. Here it does not appear to be a practical guidance method because it

results in excessive terminal accelerations for the interceptor. As an alternative, a simple algorithm

has been developed to estimate the future positions of both interceptor and target. Based on target

position, velocity and acceleration, and the known equations of motion, a power series solution for

future target position is obtained. In the same way, the future interceptor position is computed.

Frem these predicted trajectories the required interceptor attitude for zero miss is calculated and

utilized to implement the guidance law. Computer simulations have been used to test the

effectiveness of this method in combination with the single-axis attitude control scheme described

above. The simulations have been run for both thrusting and coasting targets. Based on

reasonable interceptor parameters, including roll rates, control-thrust levels, and minimum control-

thrust times it has been determined that direct hits can be obtained. However, these simulations

have not yet taken into account the effect of guidance measurement errors, nor have they

considered the effect of target thrust termination during terminal guidance of the interceptor.

1.8 Conclusions and Subsequent Research

This research has considered techniques for computing the optimal trajectories of earth-

launched interceptor rockets which are accelerated to over twice orbital velocity. The objective of

the optimization is to maximize the payload with a given interceptor takeoff weight. Terminal

constraints have been enfcrced using penalty functions. The required gradients of the cost

functions have been computed numerically using finite differences. Results have been presented

for a 4-stage example. It was found that allowing a coast period between booster stages and using

an aeroassisted trajectory to generate down lift during the final coast segment improves the optimal

payload significantly. The research has also considered attitude control of a final interceptor stage

which uses a fixed rocket engine to provide thrust along its longitudinal axis, about which the

rocket also spins. Attitude changes are achieved by firing a sýngle small thruster at right angles to

the spin axis at the appropriate time during each spin cycle. In combination with a guidance law

based on predicted future target and interceptor trajectories, it has been found through computer

simulation that direct hits can be obtained.

16



Future optimal trajectory research efforts will include parametric studies of the effect of

different prescribed flight times, target range and altitude, payload mass, and refined aerodynamic

and propulsion models. The effect of aerodynamic heating on the ascent trajectory and during the

aeroassisted terminal trajectory will also be studied. Optimal trajectories for the case where the

final coast to the target is replaced by a thrusting stage will also be determidned. '1e problem of

optimal intercept from a space base will be extended to the case where the carrier is an ascending

rocket, namely, the (n-1)th stage, and to the case where the carrier is a supersonic aircraft

maneuvering at high altitude.

Additional research on methods of guidance and control of the final interceptor stage will

consider the use of more accurate target and interceptor prediction methods, the effect of guidance

measurement errors, and the effect of uncertainty in target thrust termination time. The influence of

each of these effects on the performance attainable with the single-jet attitude control scheme will

be studied.
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A great deal of work on hypersonic flow was done in the period 1955-1970, with some

attention paid to boundary layer blowing. Although the greatest part of this work had to do with

the flow over blunt bodies, there were some studies involving slender bodies, More importantly,
multi-component flows, dissociation of the air, gas reactions involving effluents from zhe surface,

and the strong effects of heat transfer received much attention in those analyses. Because

numerical techniques were in their infancy, analytical methods and the necessary attendant

simplifying assumptions were used. In the meantime, the use of computational methods has come

to the forefront and more realistic closure models have allowed the numerical analysis of turbulent

boundary layers. Nevertheless, the literature has much to offer for this problnm and so the first

few months of this effort were used in a literature search. Particular emphasis v 'as given to papers

on gas injection into boundary layers in hypersonic flows, or at least compressible flows, on

hypersonic flow over slender bodies, and particularly over wedges, and on mdti-component flow

fields, and in particular, the calculation of multi-component transport properties.

The problem considered is that of two-dimensional hypersonic flow over a slender wedge,

from the upper surface of which a gas, not necessarily air, is blown. Figure 2.1 contains sketches

of the case where the blowing is distributed over the whole surface (2.1a) and the case where it is

confined to strips (2. lb), and illustrates the notation employed. It should be noted that s(x) is

indicated to be the distribution of effective body shape. Since it is measured relative to the surface

of the wedge, it is a displacement thickness. For strong blowing, that is when the viscous

boundary layer is blown off the wall, and moreover, for the case where this viscous layer is thin

compared to the blown layer thickness, the displacement thickness corresponds to the separating

streamline; i.e., all the blown gas flow lies within some bounding streamline. For other

conditions, when the viscous layer is not thin, a displacement thickness must be calculated. In

Figure 2. l b, the shapes s 1 (x), s2(x).... indicate the displacement thickness distributions for the

flow resulting from all the strips except the first (sl(x)), all except the first two (s2(x)) etc. Just as

in typical boundary layer theory, one can consider the thickness of a concentration layer consisting

of the region into which the injected gas is blown and/or diffuses. For example, following usual
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practice, the edge of the layer might be defined as the line along which the concentration of injected

gas is a very small constant; of course this line is not a streamline. The order of magnitude of the

ratio of the thickness of this layer to the displacement thickness depends on the case under

consideration. Thus, for the case where the injection velocity is of the same order as the v velocity

component in the boundary layer and the injected gas mixes with the boundaiy layer air (weak

blowing), the order of this ratio depends upon the Schmidt number. Indeed, *he effect upon this

ratio of the ratio of the molecular weight of the blown gas to the molecular weight of air may prove

to be an important parameter in the probiem of obtaining a given pressure distribution for a

minimum amount of blown gas. In any event, the fundamental problem considered is that of

ascertaining the effective body shape s(x) for a given blowing distribution v",1 (x) so that the

corresponding pressure distribution on the wall or body surface can be calculated; finally it is

desired to solve the inverse problem so that the blowing distribution vw(x) can be found for a

desired pressure distribution pw(X).

In hypersonic flow without blowing, the shock wave on a slender wedge lies close to the

body and thus to the boundary layer over the body. For some conditions, the inviscid shock layer

downstream of the shock wave ham a thickness large compared to the boundary layer thickness and

for others may be of the same order of magnitude, and in fact, may merge with the boundary layer.

In addition, if the nose is slightly rounded, the shock wave is detached and a thin high entropy

layer is found adjoining the wall. The parameters which control the type of flow field found are
the Mach number of the free stream M.0, the Reynolds number based on the free stream properties

and the body length Rec,9 and the wedge angle 0 and nose radius. The hypersonic similarity

parameter, written as MO in terms of the parameters already defined, is taken to be 0(1) or large

compared to one for hypersonic flow. The parameter which characterizes the relative order of the

thicknesses mentioned above is the viscous interaction parameter

c 3

XL = (2.1)

where c is a constant. Thus for XL << 1, there is a weak interaction between the inviscid and

boundary layer flow; in other words, the boundary layer is thin compared to the shock layer. As

XL increases, the boundary layer becomes thicker relative to the shock layer until a strong

interaction occurs; then, they are the same order of magnitude and the solutions for each layer must

be found simultaneously. Finally, for
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X 2= 0 (M: (2.2)

and for XL >> M 2 , the layers are merged; they are indistinguishable.

When gas injection is introduced, as an additional mechanism to change the displacement
thickness, it is still instructive to characterize the flow using XL. However, now the ratio of the

order of the displacement thickness without blowing to that with blowing 6 */ 8 b* may be used in

addition, as indicated in Figure 2.2, where various physical problems and flow structures are

associated with parametric regimes. It should be noted that there are no definite limits on any of

the regimes. The dashcd lines are drawn arbitrarily simply to illustrate that there are different

regions in the sketch; in actuality, there is a gradual change from one flow regime to the next. It is

instructive to picture the flow fields associated with various parametric regimes shown in Figure

2.2. Several such pictures for a flow over a half wedge are shown in Figure 2.3, where the

identifying letters correspond to those in the circles in the sketch in Figure 2.2. For both weak and

strong blowing, as XL increases, merged layers (not shown in Figure 2.3) occur. As seen in

Figure 2.3, the most striking feature of the flow field with blowing is that as the blowing velocity

increases, the boundary layer can be completely blown off the wall. It is this feature which will be

used to characterize the terms weak and strong blowing. Thus, as long as the boundary layer is

attached, the blowing is weak, while for strong blowing the boundary layer is blown off the wall.

It was decided to attack the problem from two different viewpoints. First, one of the

important problems in developing a computational method of solution for compressible flow is the

location and crispness of the shock wave. This is a more difficult problem in hypersonic flow over

a slender body because the shock wave is at a relatively small angle relative to the direction of the

undisturbed flow, Hence, work. is being done on developing a code which will handle flow over

slender bodies with arbitrary shape, correspending to a wedge with blowing. Since the inviscid

flow over an effective body (physical body plus displacement thickness) is being considered, the

Euler equations are being solved. The other point of view under consideration has to do with the

analyses of the near wall layers when blowing takes place. It was decided to consider the hard

blowing case first for two reasons. First, the weak blowing case is essentially contained in the

hard blowing formulation; i.e. no new mechanisms need be considered. Second, one of the
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important sub-cases in the hard blowing formulation is that where the viscous shear layer, which

results when the boundary layer is blown off the wall, is thin compared to both the blown layer

and the shock layer. Hence the problems is as sketched in case (c) in Figure 2.3, and it is seen that

for distr'ibuted blowing over the whole surface, the flow is inviscid. Thus, solutions found

analytically could also be. calculated numerically, because in this special case the whole flow field is

inviscid; such test problems can be used to validate the numerical code as well as give useful

information. Moreover, the extension to the case where the viscous shear layer thickness is no

longer negligible is relatively simple. The work discussed in this report, then, is concerned with

numerical solutions to the inviscid flow equations (Euler equations) and to solutions relating the

equivalent body shape to the distribution of blowing velocity at the wail for the case of strong

blowing; in the latter case problems with flow fields similar to those shown in both (c) and (d) of

Figure 2.3 are considered.

2.1 Analytical Avaooh

In the analyses which follow, the lengths are made dimensionless with respect to a length L

(overbars denote dimensional quantities) which for the present is arbitrary, but which will be used

later to denote the length of the body. Moreover, the dimension normal to the flow is ordered by

8L*, the basic small parameter of the problem, and defined as the value of the nondimensional

displacement thickness at x = 1 (X L). Thus ý and the displa,:ement thickness are denoted by

Y = Y/811 (2.3a)

Yd = 6 L s(x) (2.3b)

where, as previously indicated, s(x) gives the distribution of displacement thickness. For

XL << 1, ydj is the dividing strearrmine between the blown flow and the shock layer flow; the

viscous shear layer of negligible thickness lies along Yd also.

If P., p., and U. are the undisturbed pressure, density, and velocity respectively, then

asymptotic expansions for the velocity components :ad the pressure are, for the case where

blowing is small enough that the blown layer flow is incompressib9e,
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= I u(X, y) +... (2.4a)

qy= ' (L) 3 ' v(x, y) +... (2.4b)

ppWx,y)+... (2.4c)

Here qx and qy are the velocity components in the x and y directions respectively. If the blowing

velocity is large enough that the blown layer flow is compressible then,

, (1/2) u(x, y) +... (2.5a)
m

w

qY=(o)---- 8, v(x, y) +..(2.5 b)

where << and is neglected, Ro is th': universal gas constant and Tw and mw are the gas

temperature at the wall and the molecular weight of the gas injected at the wall, respectively.

At hypersonic speeds the boundary layer along a solid surface can have a significant

displacement effect on the external inviscid flow, an effect which can be greatly increased by

surface blowing. Blowing at any flight speed can be strong enough that the boundary layer leaves

the surface and the thickness of the "blown layer" is large in comparison with that of the separated

free shear layer. This "blowhard" problem has been studied for several cases by Cole and Aroesty

I I], using a systematic asymptotic approach. Their work has been chosen as the starting point for

the analytical part of the present study.

Cole and Aroesty consider thin shapes and show that the pressure in the blown layer

depends, in a first approximation, only on the streamnwise coordinate x. In most of theii examples,
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the results express the shape of the dividing streamline, which separates the blown gas from the air

which has passed through the shock wave from the leading edge, in terms of the blowing velocity

and the pressure distribution.

To obtain a general idea of the magnitudes of the aerodynamic forces available through

blowing, the first rather simple calculation concerned hypersonic flow past a wedge, with a thin

ogival shape chosen for the dividing streamline; i.e. for this calculation, s(x) was chosen, and the

required vw(x) and the resulting -(x) were calculated.. For a blown-layer thickness small in

comparison with the wedge thickness, the small pressure perturbation is linear in the slope of the

dividing streamline, and for constant surface temperature the density is nearly constant in the

blown layer. The streamwise velocity component in the blown layer is then found in terms of the

pressure from the incompressible form of the Bernoulli equation. Integration of the definition of

the stream function leads to an expression for the scaled dividing-streamline shape s(x) in terms of

the surface blowing velocity vw(x) and the pressure _(x):

x

S 2 P, )/ () 1_____x)}_2 (2.6)(-5f-).X 1112

Inversion of the integral equation and substitution of the linearized pressure formula for supersonic

flow provides an explicit expression for vw in terms of P-

For an ogival s(x) it is easy to evaluate the resulting integral analytically. The results can

then be converted to a plot of mass flow against force, as shown in Figure 2.4 for particular values

of the parameters. If there were no blowing, the pressure force on the wedge surface (normalized

in the same way as in the figure) would be, in the appropriate limiting case,
((y+ 1)02/2n x 103 2'23. The values shown in the figure are, as large as one-half this value.

If the blowing velocity is somewhat larger, the blown-layer thickness is no longer small in

comparison with the wedge thickness. The relative pressure change caused by the blowing also is

no longer small, and density changes in the blown layer can not be neglected, so that the

compressible Bernoulli equation is required. The scaled dividing-streamline shape is now
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1 12~ ~ ' /*?(\ y1/71 -1/2

s(x) () (} Ho(4) [I - I(x)]-} d4 (2.7)

where Ho = total enthalpy. A curve similar to that in Figure 2.4 is obtained by numerical

integration, and shows (Figure 2.4) the increased force available with these larger mass-flow rates.

Additional curves for th. latter case of a compressible blown layer are shown in Figure 2.5

for a dividing streamline s(x) = (const.) { 1 - (1 - x) 3 }, 0 < x < 1, and s'(x) = 0, x > 1. That is, the

dividing streamline becomes parallel to the wedge surface at x = 1, with continuous curvature. It is

found that the blowing velocity then approaches zero at x = 1, as seen in the figure. If instead, as

in Figure 2.6, s(x) = (const.) (1 - (1 - x)2 }, 0 < x < 1, and s'(x) = 0, x > 1, the blowing velocity

drops to zero discontinuously. These results are consistent with series expansions of the integral

equation about x = 1 which have been carried out for the two cases. These cases are helpful not

only in illustrating levels of available forces, but also in indicating the constraints on Vw when

blowing is stopped at some point, as in strip blowing.

By contrast, the pressure forces for very weak blowing may be too small to be useful. For

a laminar boundlary layer, the displacement thickness for high Mach number is
5* - 0 1 M. 2 x,,Rex, where Rex is the Reynolds number based on free-stream quantities and x,

and a linear viscosity-temperature law has been assumed for simplicity. Without blowing, the

resulting pressure perturbation is linear in the slope of the equivalent displacement surface, giving a

pressure force (again normalized as in Figure 24) of about 0.3 for Rex = 105 and for the wedge

angle and Mach number of Figure 2.4. With blowing this would be multiplied by a numerical

factor, say 2 or 3, and clearly is still far smallei than typical values in Figure 2.4.

As mentioned above, some effort has been spent on ascertaining the various sets of

conditions which can or must exist as vw.(x) --* 0 at a given point on the wedge surface. Such

analysis is necessary in order to handle properly the solutions for strip blowing and indeed

blowing with multiple strips. It is evident from physica! considerations and illustrated in Figures

2.5 and 2.6 that over the length of the wedge the wall pressure must decrease if the gas in the

blown layer is to go downstream. That is, the pressure gradient in the y direction is negligible and

s•o the pressure disn'ibution at the wall is that which holds throughout the blown layer; if the

pressure rose, the fluid would be accelerated upstream. However, it may be desirable to obtain
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pressure distributions quite different from those shown in Figures 2.5 and 2.6, so various
distributions of vw(x) nrust be considered. Strip blowing is a variation with promise because it
appears to allow for local increases in pressure. That is, from Figure 2. lb, with supersonic flow
over s(x), it is seen that at each discontinuity in s(x) the pressure would rise in a short distance,
then decrease again as x increases. The result appears to be several local increases in p(x) each
followed by a decrease; with the average pressure decreasing as one goes from the vertex of the
wedge to some downstream point. This will allow for a quite different , distribution from those
found from the s(x) and vw(x) distributions giver, in Figures 2.5 and 2.6.

At the end of a strip, the manner in which vw(x) -> 0 affects the distribution of s(x) and
thus of ý(x). It can be shown that s'(x) = 0 there if there are no other mechanisms to change the
pressure. From Equation 2.7, then, this can be shown to require that vw(x) -+ 0 continuously
rather than discontinuously. The manner in which vw-* 0 for a given flow field, i.e. the functional
form needed to assure that s'(x) -4 0 continuously is found using the derivative of Equation 2.7,
which relates s'(x) to vw(x) and ý(x), and another equation relating two of the three unknowns.
For first calculations, the tangent wedge approximation is being used. The resulting equation for
ý(x) and the equation showing the proper order of Ow are:

P(X . .. ) (s.(x) + ew )2 (2.8a)
2

w (L w (2.8b)

"The final relation with which one works is an integro-differential equation, of compiex form. The
analysis leading to the functional form for vw(x), and thus for s(x) and p(x), which is physically
correct and gives non-singular behavior at the edge of the strip, as well as the form of the solution
at the beginning of the next strip, is prsently being carried out.

The flows considered so far are for XL << 1; i.e. the flow pictures resemble that in sketch

(c) in Figure 2.3. As XL increases, the shear layer is no longer of negligible thickness, but of the

order of the blown iayer and shock layer thick esses; i.e., all are the same order and a strong
interaction takes place. Then the flow appears as shown in sketch (d) of Figure 2.3 and in more
detail at the top of Figure 2.7. This case aiso occurs for the. flow shown in sketch (c) of Figure 2.3
as the vertex or !lading edge of the wedge is approached; i.e. the flow first follows sketch (d) for
x << 1, ,rnd then follows sketch (c) for x = 0(l). In the following, the case where the shear layer
thickness is no longer of negligible thickness compared to the otibvr layers is considered for
hypersonic flow over a flat plate, for simplicity.
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For a flat plate, then, again using a linear viscosity-temperature law, the boundary-layer

thickness O(Mo.2/4Rex) is small in comparison with the shock-layer thickness O(I/M 00 ) when

x >> Mo. 6  , where vo./f,, is a viscous length based on free-stream quantities; v,, is the

kinematic viscosity in the undisturbed flow. In this range the interaction of the boundary-layer

with the external flow is a "weak" interaction, since the boundary-layer flow can be calculated first
and the correction to the external flow determined later. For x = O(Mo 6 K,,V,,/•) the boundary

layer and external flow must be calculated simultaneously, because the boundary-layer and shock-
layer thickness are of the same order of magnitude in M.o and Rex. in the range

M:0 2 v, 0.IU 0 << x << Mo 6 vO0/Uo0 the interaction is called a "strong" interaction, and coupled

self-similar solutions are available for the boundary layer and shock layer. When
x = O(Mo. 2 vO/JUO) ("merged-layer regime"), length scales in both directions are of the same

order, and the different flow regions are no longer distinct.

As indicated above, for strong blowing it is anticipated that there may be a significant flow

region where the shear-layer thickness can not be neglected. Te gain some understanding of the

accompanying force changes, and for later comparison with numerical calculations, the case of

strong interaction with strong blowing is being studied. The blown layer, shear layer, and shock

layer are distinct, with self-similar solutions available in each region. These can be obtained

separately, with a coupling arising primarily because the location of one layer depends on the

displacement thickness of the layer(s) below it.

To illusuoate the nature of the solution, the form of the transverse velocity component v in

each of the three regions is as shown below, in terms cf the appropriate similarity variables. The

stream function •i is defined in the usual way by I/9• = 5 qx; the coordinate -X is defined by

= (U~,i ,,)/Mo.6, so that the strong- interaction range is K.4 << 1.

blown layer: v V (--l-. ). 1 ,')M M* *I 1 (2 .9ab)
V_ N16  Pv 0 ,M Jv

shear layer: v( (.i---"" v1(•), M( (2 .9c,d
V_15 OýVM.. V, .N1

shock layer: v : I - t), t = ( 2
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The solution for the blown layer is found from the results of Cole and Aroesty [1]. In
particular, the surface blowing velocity vw = (const.) U0 /Q,,x is found to give surface pressures

S= (const.) ý,o,,o2/ýx, consistent with the conventional strong-interaction theory but with a

larger constant factor, which is to be determined. The solution for the shear layer is found by

numerical integration of the compressible boundary-layer equations in self-similar forrri; velocity

and total-enthalpy profiles are shown in Figure 2.7. The solution for the inviscid shock layer

requires numerical integration of the self-similar hypersonic small-disturbarce equations, which is

currently being carried out.

2.2 Numerical Approach

The computation of hypersonic flows, in the Mach-number range 8-30, puts before the

computational fluid dynamicist a number of problems not encountered in the lower Mach-number

range. One problem is the loss of accuracy of conventional finite-volume methods when
"capturing" strongly oblique disconitinuities; more problems are encountered in marching to a

steady state, where loss of positivity of certain state quantities, non-uniqueness of discrete

solutions (recently found at NASA Langley Research Center) and general inefficiency of classical
relaxation methods on vector computers all contribute to slowing down or even halting the

convergence process. Many of these problems have to be add,"essed when computing the two-

dimensional hypersonic flow over a wedge with surface blowing, which is the theme of the present

work.

In the period covered by this report, emphasis was put on the question of accuracy,

although matters of computational economy are not ignored, as wil become evident below.

The representation of discontinuities oblique to the computational grid with high resolution

is a fundamental problem which at present is being considered only by a handful of researchers. It

would be easier to ignore it and simply rely on the capacities of today's suptrcomputers, namely,

by using greatly refined grids. Such a strategy has often forestalled advances in computational

algorithms, especially in research environments equipped with the latest, top-of-the-line

computers, and eventually backfires. In the present situation it is the pursuit of three-dimensional

flow simulations that necessitates the development of high-resolution algorithms, since the number

of nodal points per dimension drops significantly.
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There are two ways to improve the resolution of a flow computation without unduly taxing

the CPU budget; local grid refinement, and local reconstruction of discontinuities. These are

independent techniques that may complement each other' in practice, and both are equally worthy of
research effort and support. Here, it has been decided to develop the latter technique, although

funding has been requested from other sources for developing grid-adaptation techniques, in

parallel to this work.

A study of the literature on the subject of "jump recovery" at the start of the period, and

discussions of the subject with a few active in the field (S. F. Davis, NSWC, P. L. Roe,
Cranfie!d, and C. Hirsch, Brussels) during the summer have led to the following insights:

(a) there are several models of local flow that can provide information about strong

waves present in a discrete (finite-volume) solution;

(b) no one knows exactly how to include this information in a computational flow

algorithm that is stable and yields the desired accuracy.

While appaierntly the greatest challenge is in (b), there is still ample room for ideas regarding the

modelling of local flow based on limited discrete data.

Following an approacht previously indicated in Reference [2], the initial work was begun

with a least-squares analysis of the local flow field based on only two sets of flow quantities,

describing the averaged states in two adjacent cells of fluid. If these states can be connected by a

single oblique discontinuity, they should satisfy the jump equations

V[q] = [t] cos at + [g] sin a, (2.10)

where: Q is the state vector (components: mass, momentum and energy density), f and g are the
flux vectors in a cartesian frarrae, a is the direct angle of the normal to the wave front, v is the wave

ve.oci:y, and [..I denotes a jump (see Figure 2.8). In computational practice, exact satisfaction of
th.se equations never happens, but a set of values (a, V) may be sought that minimizes the length

of dhe iesidual vector ::

r=- V[Q] + [fl cos a + [gI sin a (2.! 1)
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If the notation (.,.) is used for an inner product, then

(r,r) = V2([Q], [Q)) -2V([Q], [f] cos a + [g] sin a)

+ (It] cos a + [g] sin a, If] cos a + [g] sin a) (2.12)

which, for fixed a, reaches a minimum for

V = {([Q], [f]) cos a + ([Q], [g]) sin a)/([Q],[Q]) (2.13)

With this choice of V,

r= ([fIQ], c )[Q]} Cos a + ([g] - (Q] [g) [Q]J} sin a

(IQ], [I _Q) (IQ], [Q

-a cos a + b sin a (2.14)

Therefore

min (r,r) = (a,a) cos2 a + 2(a,b) sin a cos oa + (b,b) sin 2ot
V

1 1
T ((a,a) - (b,b)) cos 2a + (a,b) sin 2a + {(a,a) + (b,b)) (2.15)

Now xg is defined such that

tan 2W = 2(a,b)/{(a,a) - (b,b)) (2.16)

More specifically,

sin 2 4 = -2(a,b)/h, (2.17)

cos 2 41 = -((a,a) - (b,b)}/h, (2.18)

h = (4{(a,a) - (b,b)}-2 + 4(a,b)2  (2.19)

Then
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h (
rnin (r~r) =--cos 2(a - V) + (a,a) + (b,b)) (2.20)

V

which reaches its minimum value for

a = 4f + KIC (2.21)

It is convenient to adopt

a = W (2.22)

as the essential solution; with ac = xV + xt there is only a change of sign in V. To find V, (2.22) is

inserted into (2.13).

There is one degenerate case, namely

[Q] // [f/ [g] (2.23)

leading to a = b = 0. This occurs for the inviscid flow equations when the wave shows up only as

a density (or entropy) fluctuation. Such a wave is linear, implying that the wave's velocity vector

is independent of the fluctuations it causes. In this case the normal to the wave front is not

meaningful; the flow angle remains the only useful direction. The formula for a is therefore

modified such as to yield the flow angle in the degenerate case (Eq. 2.23). Inserting this value into

Eq. (2.13) returns the flow speed.

Since entropy waves do not contribute to the detection of a wave direction from two

neighboring states, one might as well remove these from the analysis. Eliminating entropy
variations not accompanied by pressure variations leads to a very simple formula for at:

tan (2a) = 2[ul [vl /( [u]2 - [v]2) (2.24)
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This equation has two solutions:

tan a, = [v] / [ul, tan a2 = -[ul / [v] (2.25a,b)

Here u and v are the x- and y-components of the flow velocity. The first angle al indicates the

direction normal to a shock wave, the second angle a2 the normal to a shear wave. By removing

the entropy variations--which were irrelevant- bifurcation has been introduced: it is not clear

how to switch smoothly from one case to the other for general data. In this respect the analysis is

still incomplete.

Knowledge of ca enables a solution to be found of the problem of the interaction between

the two states, called QL and QOj, in the proper frame of reference, in particular, using the proper

projected velocities. The generic formula to compute the flux of the interface between two fluid

cells follows from the solution of the Riemann problem Jefined by the different states. Solving the

Riemann problem, however, requires an iterative procedure, even when the ideal-gas law is

assumed, which explains the emergence of several highly useful "approximate Riemann solvers",

reviewed in [3] and [4]. Knowledge of V suggests a new approximate Riemann solver, with the

algebra brought down to the absolute minimum:

f (QL, QR) = W[(QL) + f(QR)} - IVI (QR- QL)I (2.26)

The sign A indicates that the fluxes are measured in the direction of the wave vector. If the states

QL and QR can be connected by a single discontinuity, this formula recovers the flux that follows

from the exact Riemann solution.

Less clear is how to compute a flux in the direction ax + n/2, i.e. normal to the wave vector.

This flux, indicated by [, is needed for compounding the fluxes in an arbitrary direction, in

particuiar, in the direction normal to the interface separating cells L and R (see Figure 2.9). The

simplest formula is
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g(QL, QR) = IA(QL) + 9"(QR) (2.27)

but this leads to central-differencing of the 9-fluxes in the final updating scheme and could be

unstable. Numerical tests confirm this as will be seen. Davis [51 avoided this type of instability by

averaging ý over 3 cells rather than 2, as in Eq. (2.27), according to an algorithm distinguishing 8

cases. Present experimentation is aimed at finding a simpler, yet robust algorithm using a minimal

number of data.

The above analysis is not restricted to updating schemes of a particular order of accuracy.

In fact, tests of the numerical resolution of discontinuities are best carried out on the basis of a

first-order upwind-differencing scheme, since the penalty on ignoring the direction of a

discontinuity is greatest. Results for an oblique shock show the excessive smearing typical for a

standard upwind scheme. In contrast, a shock aligned with the grid has only 1 to 2 cells across.

For the actual computations a scheme with second-order accuracy is needed (one of the so-

called K-schemes tested in [6]); this is presently being tested. The time-marching experimentation

will be carried out with new explicit methods developed in parallel by some other doctoral students

in the department. These comtoine a local but matrix-valued preconditioner with a Runge-Kutta-

type updating scheme that hides a low-pass filter. Such a marching algorithm is needed for a

successful multigrid scrategy, to be added later. Both the preconditioner and the Runge-Kutta
scheme depend crucially on the availability of directional information such as the angle a derived

above. The choice of the marching scheme, viz. explicit rather than implicit, is motivated by the

availability of vector computers, for which such schemes are pre-eminently suited.
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2.3 Numerical Results

The numerical work was started by developing a set of grids on which to carry out the

numerical computations. The logical first choice was a cartesian grid positioned along the wedge

face extending from the nose back (Figure 2.10). However, once blowing is applied at the nose it

i,. anticipated that the effective body shape will become more blunt and the shock may stand out off

from the body and thus fall off this grid. Moreover, since the nose area is anticipated to be a
critical area, a local concentration of points may prove worth while. With this in mind a standard

polar grid and a C-type grid were developed (Figs. 2.11 and 2.12). The C-type grid in this case is

the result of taking a regular C grid and letting the radius of curvature go to zero at the nose. This

creates a set of triangles at the nose which should not be a problem with a Godonov-type finite-
volume scheme. The C-type grid (as is the cartesian grid) is created by laying out points along the

body and then constructing, row by row, nearly orthogonal cells with specified wall heights. By

controlling these wall heights, one can expand or contract parts of the grid at will (i.e. concentrate

points in a specific area).

In order to study various numerical effects, a series of test problems are derived from the

full problem. The test problem considered first is the resolution of a shock clue to a wedge with a

100 half angle in Mach 5 flow. The numerical calculations are carried out on a cartesian grid

positioned along the wedge face. This results in a shock at an angle of about 9.50 relative to the

lateral lines of the grid (exact solution). Initially, a first-order upwind scheme was tested using a

Harten-Lax-Roe approximate Riemann solver for each dimension separately,

I

f(QJL, QR) I f f(QL) + f(QR) -1'VxI(Q -Ol,)) (2.28a)

90T, QB) = ½ [g(Qr) + g(QB)]-'VyI(Qr-QB)) (2.28b)

where. V. and Vy ar based on one-dimensional information:

VX = ([QI, [f1)/([Q], [Q]), (2.29a)
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Vy = ([Q], [gJ)/([Q], [Q]). (2.29b)

This appucation of an essentially "one dimensional" scheme to two dimensions results in excessive

smearing of the shock, as seen in Figs 2.13 and 2.14. Figure 2.13 is a contour plot of the density;

the x-axis lies along the face of the wedge, the y-axis normal to it. The nose of the wedge is at the

origin. Figure 2.14 is a 3-D plot of the density junip. Again the nose of the wedge is at the origin,

but now the y-axis lies along the face of the wedge, the x-axis normal to it. The x-y plane is the

computational grid and the magnitude of the density is plotted normal to it along the z axis.

Next the first-order code was extended to calculate the cell interface fluxes based on fluxes

measured normal to and parallel to the wave. The flux normal to the wave is described by the

formula

f(QR, QL) = {[f(QR) + f(Qj)]-IVI(QR-QL)} (2.30)

With V obtained from Eqs. (2.13 - 2.22), the flux tangent to the wave is found by the simple

averaging procedure, Eq. (2.27). This results in an unstable scheme. The calculation was started

with an initial-value distribution similar to that of the exact solution. Figure 2.15 shows the

distribution after 3 time steps. Figure 2.16 shows the distribution after 233 time steps when one

cell pressure has become negative.

By adding dissipation along the wave, i.e. using

g(QR, QL) = f[gg(QR)+ •(QL)I-IVI(QR-Qt.)) (2.31)

the scheme becomes stable but the lower quality of the non-rotated algorithm is recovered, as

shown by the smeared shock in Fig. 2.17.

With this matter still unresolved a second-order upwind scheme was implemented. This

produces sharper shocks to begin with, since it is assumed that the distribution of state quantities in
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each cell is linear rather than uniform, as for the first-order scheme. The gradient of this

distribution in each cell is obtained by central differencing, e.g.

iu Aj-i1/2 u, j+I (2.32)
&x =2Ax

but this value is "limited" in order to prevent numerical oscillations. It turns out that small

oscillations nevertheless remain present; these are sensitive to the strength of the limiter as well as

to the obliqueness of the shock with respect to the grid.

The limaiter used for the results of Fig. 2.18 is the weakest possible one, due to Van Leer

[7]:

1• A j-1I/2 u+A j+1/2 11S minmod (2A.j1/2 u, A2A 41/2u)

Ax 2 1 )
u)j I limited if sgk (Aj 1/2 u) =- sgn (,ASj+I/2 u)

o0 otherwise (2.33)

For Fig. 2.19 the strongest possible limiter was used:
I• m-inmod (A,-,i.zu, A j+lf2u)

a(u) } A if sgn (A 2u)= sgn (A j+12u)

0 otherwise (2.34)

still leaving some oscillations. Adjusting the mesh ratio Ay/Ax such that the shock runs diagonally

across the grid (see Fig. 2.20) removes almost all oscillations when the limiter in Eq. (2.34) is

used. Further experimentation is needed to ensure that the combination of flux formulas and

gradient lirmiter gives a monotone shock profile regardless of the mesh ratio.
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FIG 2.9 Sketch of adjoining cells; both f and g are
needed to compute the flux F normal to the
cell interface.
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Fig. 2.14 Plot of the resulting density distribution
when the Harten-Lax-Roe approximate Riemann solver is
applied to each dimension separately. The Y axis lies
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to the wedge face, and the density is plotted along the
Z axis.
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Lig 2.15 Plot of the density for the case when numerical

Iissipation is added only normal to the wave. The scheme
has been 3topped after 3 time steps to show the onset of
instability.
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Fig, 2.16 Plot of the density for the case when numerical
dissipation is added only normal to the wa-re. The pressure
went negative after 233 time steps.
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Fig. 2.17 Plot of the density for the case where numerical
dissipation has been added both normal to and along the wave.
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Fi 2.i 9
Plot Showing t~e magnitude of Ohe dens~tv as found by the second order scheme
using the Nix limiter as in Eq, 2L34.
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Fig. 2.20
Plot showing the magnitude of the density as found by the second order scheme
using the flux limiter as in Eq. 2.34, but evaluated on a grid scaled such that the
shock passes through each cell at a 450 angle telative to the cell walls M= 5 9 = 100
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